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1. Introduction

[1] Experimentally, one finds that as a gravity-driven
finger (GDF) grows downward in an initially dry, water
wettable, homogenous sand at low supply rates and where
the air phase can escape freely, its tip oversaturates and then
drains a distance behind, giving rise to a nonmonotonic
signature in both time (at a given location) and space (up
along the finger’s profile) [Glass et al., 1989]. In a hyster-
etic medium, such a nonmonotonic response induces heter-
ogeneity in hydraulic properties and produces a finger core
and fringe region structure that persists in time and over
subsequent drainage and infiltration cycles. While a hyster-
esis-based theory [Glass et al., 1989] allows the under-
standing of the persistence mechanism once a finger has
formed, it says nothing about why an oversaturation of the
tip should occur in the first place. In fact, it seemed obvious
at the time when the nonmonotonic response was discov-
ered that the traditional unsaturated flow theory, founded on
the inherently diffusive Richards equation (RE) and mono-
tonic properties, would not yield this initial oversaturation
and thus could not be used to model GDF.

[2] Regardless, there has been interest on the part of many
to explain GDF with traditional concepts of unsaturated
flow. Since the RE is very nonlinear and we know that the
media behaves hysteretically as well, emphasis in this quest
was placed on numerical solution. Nieber [1996] was the
first to publish what he believed to be a numerical solution of
the RE that yielded GDF and its nonmonotonic response.
This method was subsequently used in a series of papers
concerning various aspects of GDF and its influence on
solute transport as well as hydrophobic sands [e.g., Ritsema
et al., 1998a, 1998b; Nguyen et al., 1999a, 1999b; Nieber et
al., 2000; Ritsema and Dekker, 2000]. However, after careful
investigation, one finds that in Nieber’s [1996] method,
numerical errors (more specifically spatial truncation error
arising from his use of a downwind averaging method) cause
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numerical oscillations that, when combined with hysteresis,
generate a GDF-like response. In fact, for the parameter
values that yield a GDF-like response the errors are so large
that one can show that the governing equation actually being
solved numerically is not the RE at all.

[3] Our purposes and conclusions were stated in a previ-
ous paper [Eliassi and Glass, 2001a, sections 1 and 5]. We
reiterate them here so that they are clear in context of both
Braddock and Norbury [2003] (hereinafter referred to as
BNO03) and this reply. Our purposes were twofold: (1) To
illustrate through artifact-free numerical simulations that the
RE in conjunction with standard constitutive relations and
hysteretic equations of state [Mualem, 1976; van Genuchten,
1980], which we refer to as standard monotonic properties
(SMP), will not yield GDF and its nonmonotonic signature
within parameter space where GDF has been found exper-
imentally and (2) to demonstrate through detailed analysis
that the numerical method used by Nieber [1996] and
colleagues [e.g., Ritsema et al., 1998a, 1998b; Nguyen et
al., 1999a, 1998b; Nieber et al., 2000] relies on truncation
error induced numerical oscillation associated with a down-
wind averaging, which in combination with hysteresis pro-
duces an “organized oscillation” that is GDF-like.

[4] Our conclusion, as stated in the last sentence of the
abstract, was “Thus the RE along with standard monotonic
hydraulic properties does not contain the critical physics
required to model gravity-driven fingers and must be
considered inadequate for unsaturated flow in initially dry,
highly nonlinear, and hysteretic media where these fingers
occur” [Eliassi and Glass, 2001a]. So let us be perfectly
clear: Any simulation that looks like GDF in our paper [i.c.,
Eliassi and Glass, 2001a], those by J. L. Nieber and
colleagues (i.e., those listed above), as well as the ones
shown here, are not due to the physics explicitly represented
in the model and instead arise purely from truncation error
induced numerical oscillation.

[5] While we are happy that BNO3 have given us the
chance in this Reply to further emphasize the results of
Eliassi and Glass [2001a], they are mistaken in what they
perceive as oversights in our paper. They put forth three
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such oversights: (1) that the basis of our assumptions on
monotonicity are not fully met, (2) that the temporal
truncation errors are leading to oscillation in the solutions,
and (3) that these oscillations pose difficulties in the choice
of switch value in the hysteresis relations. To each of these,
we give our detailed reply in sections 2—4.

2. RE + SMP Yields a Monotonic Solution
Where GDF Should Form

[6] BNO3 state that published unsaturated flow theory
only treats monotonicity as a one-dimensional (1-D) con-
cept (both we and they reference the literature; note that we
reference Youngs [1995] because of his simple description
of the water content profile when the surface is subject to a
constant flux, not that Youngs uses the word ‘““monotonic”).
BNO3 point out that for 2-D situations, theory has yet to
prove that RE + SMP can only yield a monotonic solution.
While it may be true that no paper, published to date,
explicitly proves the maximum principle for the general
nonlinear 2-D case, there are literally hundreds of published
papers that give analytic and numerical solutions to the RE +
SMP in 2-D cases, all of which display monotonic results
(of course, this is only true for a homogeneous medium with
constant initial and boundary conditions as we study).
Indeed, we show in our paper that when we solve the RE
numerically and are careful to keep numerical errors in
check, a monotonic solution is found for parameters repre-
sentative of experiments where GDF occurs (e.g., refer to
Eliassi and Glass [2001a], Figures 1d and 3b, for the
second-order centered difference (CD2) result). That is
why we conclude in our paper [Eliassi and Glass, 2001a]
that the RE + SMP will not yield a nonmonotonic solution
where it has been found experimentally, and thus the RE +
SMP does not contain all the relevant physics to model
GDF. We encourage BNO3 in their quest for a more general
proof of monotonicity; yet this is not necessary to support
our thesis.

[7] However, if one is not convinced by the literature,
experience, or numerical methods, we present the following
example as suggested by BNO3. Figure 1 presents the
results for a 2-D simulation of RE + SMP where the flux
at the surface is applied to the entire top region (i.c., a
pseudo-1-D case, as BNO3 refer to). Physical and numerical
parameters (see caption for Figure 1) are those used in the
baseline cases of Eliassi and Glass [2001a]. We see that for
nonhysteric cases, first-order downwind (DW1, as used by
Nieber [1996]), CD2 (simple arithmetic averaging) and
first-order upwind (UW1, an inherently monotone averag-
ing method) a horizontally uniform, 1-D wetting front (WF)
advances into the domain. However, note that while for
UWI1 (Figure 1c) there are no oscillations present (that is,
the saturation ranges from the initial value at the WF to its
maximum asymptotic value imposed by the boundary
condition), for DW1 (Figure la) and CD2 (Figure 1b) an
oscillation is present at the WF. This is not at all surprising,
because for coarse enough grids both DW1 and CD2 will
yield oscillations. However, as we further refine the grid for
CD2 (Figure 1d), the oscillation disappears, and the front
becomes quite sharp and monotonic. Thus as BN03 would
have it, the results in Figures lc and 1d give an illustrative
or pragmatic “proof” of the maximum principle for the
nonlinear RE + SMP. As an aside, we also show a hysteretic
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simulation for the DW1 case (Figure le). Now we see that
hysteresis allows the capture of the numerical oscillation at
the WF in an organized oscillation that yields GDF-like
fingers having saturated tip lengths representative of the
physics and not the numerics.

[8] Finally, we note in passing that there is a vast
literature dedicated to numerical techniques designed to
ensure monotonicity in numerical solutions. These techni-
ques include the total variation diminishing technique [e.g.,
Harten, 1983], flux-corrected transport [e.g., Boris and
Book, 1973], van Leer’s [1977] second-order monotone
scheme, Leonard’s [1979] quadratic upstream interpolation
technique, and many others. All of these techniques have
been developed and successfully applied to a variety of
multidimensional problems in conjunction with advection-
diffusion (and/or) dispersion equations with one common
goal in mind: to ensure monotonicity whereby numerical
oscillations do not mask the underlying physical processes
being modeled. Indeed, implementing such techniques in
the context of RE + SMP forces a monotonic solution in the
parameter range where GDF occurs and thus suppresses
spurious numerically based GDF-like behavior [Eliassi and
Glass, 1997].

3. Spatial Truncation Errors in Nieber’s
Method Lead to GDF-Like Solutions

[o9] One of the main purposes of our paper [Eliassi and
Glass, 2001a] was to identify the numerical oscillations in
Nieber’s [1996] method with the creation of near-physical,
GDF-like solutions. To accomplish this, we analyzed the
temporal and spatial leading truncation errors (LTEs) at the
WF via direct calculation as a simulation progressed. We
found the temporal LTE to be always much smaller and,
indeed, negligible relative to that of the concurrent spatial
terms’ LTE. This resulted from the restrictions placed on the
time step, which included a global maximum of 10~ (not
reported by Eliassi and Glass [2001a]). Thus we did not
present or discuss the temporal LTE further in our paper (see
our statement on this point [Eliassi and Glass, 2001a, last
paragraph of section 3]). The negligibility of the temporal
LTE is especially true near the WF where we are particu-
larly concerned for the GDF problem. There, the temporal
LTE for GDF-like solutions [e.g., Eliassi and Glass, 2001a,
Figures 6a and 6b] can be many orders of magnitude
smaller than the combined spatial LTE. Thus for the cases
we have considered it is not the temporal term’s LTE that
drives and/or controls the artificial response that yields a
GDF-like solution in Nieber’s [1996] method; rather it is the
LTE of his downwind averaging method (and for that matter
any averaging method that can cause oscillations at the
WEF).

[10] Beyond the fact that the temporal LTE can be shown
to be negligible and therefore irrelevant in our simulations,
let us turn our attention to BNO3’s linear analysis of the
temporal LTE. For our problem, i.e., GDF in initially dry
highly nonlinear porous media, analysis should be focused
on the WF where state variables are changing rapidly.
Because BNO03’s linear analysis applies only away from
the WF, one must ask how it can shed light on the causes of
the GDF-like behavior. For example, let us consider the
error in the horizontal direction (i.e., m in our notation)
across the artificial GDF-like solution [see Eliassi and



&-direction (-)

ELIASSI AND GLASS: COMMENTARY COM

(b) CD2 (c) UW1

(@) Nonhysteretic DW1
0

-5

-10

-15

-20

0 5 10 0 5 10 0 5 10

n-direction (-) n-direction (-) n-direction (-)

0.0 0.5 1.0 0.00 0.25 0.50
Saturation Saturation

Figure 1. Saturation fields for two-dimensional numerical simulations, based on the Richards equation

(RE) and standard monotonic properties (SMP), for constant flux infiltration, into an initially dry, highly
nonlinear porous media, 10 dimensionless units wide and 20 dimensionless units tall, at a dimensionless
time of T = 50. We illustrate in nonhysteretic simulations that while (a) the first-order downwind (DW1)
and (b) the second-order centered (CD2) methods yield oscillatory solutions at the wetting front (WF) for
coarse grids, using (c) the inherently monotone first-order upwind (UW1) or (d) CD2 methods with a
more refined grid, the solution is monotonic (i.c., oscillation free). We do not recommend the use of the
DW1 method (initially suggested by Nieber [1996]) and only present it here for the sake of consistency
with our previous simulations [Eliassi and Glass, 2001a]. The solutions in Figures 1c and 1d clearly
depict that monotonicity can be achieved for numerical solution of nonlinear RE + SMP. When hysteresis
is included and the solution is oscillatory, GDF-like solutions result as we show in Figure le for DW1.
The parameters for these examples are the same as for the baseline cases discussed by Eliassi and Glass
[2001a]. For all cases here the initial saturation is uniform, having a value of ©; = 107'°; the
dimensionless applied surface flux ratio is R, = ¢/K, = 0.1, with all other boundaries being of no flow
condition, where ¢, and K, are the dimensional applied flux and saturated conductivity of the media,
respectively. The SMP are determined using van Genuchten’s [1980] pressure saturation and Mualem’s
[1976] relative permeability functions, where n = 15 and a* = 1 for nonhysteretic and o* = 0.5 for
hysteretic properties (for details, see Eliassi and Glass [2001a]). Note that when the solution is
monotonic, the maximum saturation yields an asymptotic value of ©, = 0.4355, which can be found
using the relationship Ry = k(©,), where k is the relative permeability function at an asymptotic
saturation of © . In fact, for all cases, O, = 0.4355 immediately behind the WF all the way back to the
surface. The saturation in the color bar ranges from 0 to 0.5 for Figures 1b, 1c, and 1d to better show the
solution near the WF across the various averaging methods. Other parameters used include uniform
square grid spacing An = A§ = 0.2 in Figures la, 1b, and 1¢ and An= Ag = 0.1 in Figure 1d. See also
Eliassi and Glass [2001a] for additional explanation on the choice of the parameter.

Glass, 2001a, Figure 9a]. From BNO03’s linear analysis (that
results in the linear form of the telegraph equation), they
explain the behavior of such a horizontal transect as a
standing or traveling wave solution for the temporal LTE.
On the contrary, one can show through direct calculation of

the various LTE components that the horizontal behavior of
the total LTE is due nearly entirely to the behavior of the
spatial terms’ LTE. In fact, the ratio of the temporal LTE to
the total LTE (i.e., the sum of spatial and temporal LTE)
throughout the entire domain, and in both the hysteretic and
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nonhysteretic simulations [Eliassi and Glass, 2001a,
Figure 9], never rises above a maximum of 1.7 x 10",

[11] However, for the moment, let us put aside the fact
that temporal LTE was negligible in our simulations. Let us
consider whether the temporal LTE could indeed induce an
artificial GDF-like response. With a spatial discretization
given by CD2, which has reasonably low error, we can write
the lowest-order, modified governing equation for constant
grid spacing as follows:

- {8 - oot - 222
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The left-hand side of equation (1a) represents the standard
form of the RE, and the three terms on the right-hand side
(RHS) refer to the LTE terms for the temporal, capillary, and
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gravity components, respectively, where all variables are
defined in Eliassi and Glass [2001a]. There, we refer to
equation (la) as the modified governing equation, since,
depending upon the size of the various terms on the RHS of
equation (la), it is the actual equation that is being solved
numerically.

[12] If we assume the spatial grid spacings, An and Ag,
are small enough (i.e., the spatial LTE are fairly small),
while increasing the time step size, AT, it is easy to
demonstrate that the temporal LTE could indeed begin to
dominate the RHS of equation (la). In fact, the functional
form of the temporal LTE is such that it could cause an
oversaturation at the WF (i.e., yield the appropriate form of
oscillation), which in combination with hysteresis might
generate an artificial GDF-like response. However, one
must be a bit careful here, since as AT increases, the
numerical stability criterion may be violated, and the
solution may not converge even if time implicit numerical
solution methods are used.

[13] As a final point on this matter, BNO3 believe that we
should have used a higher-order temporal discretization.
Given that we found temporal LTE to be negligible com-
pared to spatial LTE, a further reduction in temporal LTE
will not eliminate the driving spatial LTE that causes the
oscillations at the WF. Instead, in combination with hyster-
esis, these spatial LTE-induced numerical oscillations create
an organized oscillation that is GDF-like with a length scale
that is associated with the physics and not the numerics.
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This indeed was the reason why solutions of RE + SMP that
yielded artificial fingers have been able to masquerade for
physically based fingers for so long. Indeed, when the errors
become this large, one must recognize that the numerical
solution is no longer that of the RE + SMP.

4. The Choice of Reversal Threshold Value in
the Hysteresis Relations for QOur Problem Is
Quite Clear

[14] If under conditions where the governing equation
must yield a monotonic solution and if the truncation error
that could induce nonmonotonicity is small enough,
nowhere in the field will hysteresis be invoked. Since this
is what we wish to demonstrate in our paper, we took the
smallest possible value for the reversal threshold (just above
machine error) so that any numerical artifact would be
caught. In this way, if none are found the solution is indeed
demonstrated to be monotonic (Figures 1c and 1d) (see also
CD2 result of Eliassi and Glass, 2001a, Figures 1d and 3b).
However, as we point out [Eliassi and Glass, 2001a, in the
last paragraph of section 2.3 and in section 3.3], when such
TE-induced oscillations are present, hysteresis will create an
organized oscillation that yields a GDF-like solution. As an
aside, we have shown in other work [Eliassi, 2001] that the
organized oscillation is found over the range 1075 < ey <
1073, where ¢ is the dimensionless hysteretic threshold.
For € > 1072, one no longer obtains an organized GDF-
like oscillation but rather a peaky oscillation as can be seen
in our nonhysteretic simulations for large spatial LTE [see
Eliassi and Glass, 2001a, Figures 5 and 6].

[15] As a final point on this matter, BNO3 make their own
suggestion for a way to calculate the reversal threshold
based on their linear analysis of the temporal LTE that
applies only away from the WF. Their arguments lead to the
result that “the essential length scales of the finger need to
be considered” [Braddock and Norbury, 2003]. Of course,
as we have argued above, choice of the reversal criterion is
problem-specific, and we are uncertain as to the exact
problem that they are really addressing. However, we
encourage BNO3 to continue in this direction but hope that
they implement their scheme within the context of a
governing equation that incorporates physics beyond that
embodied within RE + SMP.

5. Summary

[16] We concluded [Eliassi and Glass, 2001a] that the
RE + SMP cannot support a nonmonotonic flow response
for conditions where GDF has been experimentally ob-
served. Since such physical nonmonotonicity is an essential
characteristic of GDF, standard unsaturated flow theory
(i.e., either the flux law and/or SMP) is insufficient to
describe all aspects of unsaturated flow physics at least
for infiltration in initially dry, highly nonlinear, and hyster-
etic media where GDF occurs. Recently, we have consid-
ered the extension of the RE to include the experimentally
observed holdback-pileup (HBPU) effect [Eliassi and
Glass, 2001b, 2002]. By postulating the HBPU effect as
physically tied to WF sharpness the HBPU can be mathe-
matically formulated in a variety of ways to include
hypodiffusive, hyperbolic, and mixed spatial-temporal
forms. For each an extended flux relation comprised of
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the Darcy-Buckingham flux plus an additional component
due to the HBPU effect can be inferred. While parallels for
each extended flux relation can also be found in the
multiphase literature, it remains to be seen whether such
porous continuum-scale models can be applied such as to
increase our basic understanding of the GDF process. We do
know, however, that GDF can be easily simulated using
noncontinuum approaches based on modified invasion
percolation (MIP) [Glass and Yarrington, 1989, 1996]
including the underlying nonmonotonicity [Glass and Yar-
rington, 2001, 2003]. Because MIP approaches represent
the physics of phase displacement at the pore scale with a
set of fundamental, mechanistic, physical rules, they may
provide a better context in which to increase our under-
standing of GDF.
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